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A B S T R A C T   

Linking geospatial neighbourhood design characteristics to health and behavioural data from population- 
representative cohorts is limited by data availability and difficulty collecting information on environmental 
characteristics (e.g. greenery, building setbacks, dwelling structure). As an alternative, this study examined the 
feasibility of Generative Adversarial Networks (GANs) – machine learning – to measure neighbourhood design 
using ‘street view’ and aerial imagery to explore the relationship between the built environment and physical 
function. This study included 3102 adults aged 45 years and older clustered in 200 neighbourhoods in 2016 from 
the How Areas in Brisbane Influence Health and Activity (HABITAT) project in Brisbane, Australia. Exposure data 
were Google Street View and Google Maps images from within the 200 neighbourhoods, and outcome data were 
self-reported physical function using the PF-10 (a subset of the SF-36). Physical function scores were aggregated 
to the neighbourhood level, and the highest and lowest 20 neighbourhoods respectively were used in analysis. 
We found that the aerial imagery retrieved was unable to be used to adequately train the model, meaning that 
aerial imagery failed to produce meaningful results. Of the street view images, n = 56,330 images were 
downloaded and used to train the GAN model. Model outputs included augmented street view images between 
neighbourhoods classed as having high function and low function residents. The GAN model detected differences 
in neighbourhood design characteristics between neighbourhoods classed as high and low physical function at 
the aggregate level. Specifically, differences were identified in urban greenery (including tree heights) and 
dwelling structure (e.g. building height). This study provides important lessons for future work in this field, 
especially related to the uniqueness, diversity and amount of imagery required for successful applications of deep 
learning methods.   

Background 

An individual’s physical function declines with age, with the tra-
jectory of this decline determining the age at which individuals are 
likely to lose independence in undertaking activities of daily living 
(World Health Organisation, 2002). The rate at which an individual’s 
function declines is strongly influenced by a variety of modifiable 
individual-level lifestyle factors such as physical activity (Manini and 
Pahor, 2009), smoking, diet, and alcohol consumption (Hutchison et al., 
2006), as well as environmental-level factors. These 
environmental-level factors, hereafter referred to as the built 

environment, are typically defined as a set of objective and perceived 
characteristics of the physical context in which people live, and include 
aspects of urban design, availability of local destinations (e.g. stores, 
public transit), traffic volume and speed, and distance to and design of 
venues for physical activity (e.g. parks) (Cerin et al., 2017). It has been 
postulated that these built environment characteristics influence 
individual-level health behaviours, and consequentially the rate of 
decline of physical function, through the provision of a setting for 
health-enhancing behaviours to occur (Papas et al., 2007). 

Typical epidemiological approaches to understanding how the built 
environment is associated with health behaviours and outcomes is 
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through examining associations between built environment character-
istics, measured using either geographical information system (GIS) data 
(Zhu, 2016) linked to behavioural data from population-representative 
cohorts, self-reported data on the local built environment from partici-
pants themselves, or environmental audits (Barnett et al., 2017a). Of 23 
quantitative studies examining associations between the built environ-
ment and physical function in a recent systematic review (Rachele et al., 
2019), 10 studies (Balfour and Kaplan, 2002; Byles et al., 2014; Keysor 
et al., 2010; Latham and Williams, 2015; Nguyen et al., 2016; Steptoe 
and Feldman, 2001; Walsh and Gannon, 2011; Werngren-Elgström et al., 
2008; White et al., 2010; Sakari et al., 2017) used self-report measures 
and 13 (Beard et al., 2009; Brown et al., 2008; Clarke et al., 2008; Clarke 
and George, 2005; Clarke, 2014; Freedman et al., 2008; Michael et al., 
2011; Schootman et al., 2012; Takahashi et al., 2012; Vogt et al., 2015; 
Etman et al., 2016; Nascimento et al., 2018; Soma et al., 2017) used 
objective measures (e.g. GIS-based measures, census data or similar). 
Studies assessed features related to the participants’ home including the 
home external appearance and building setbacks (Werngren-Elgström 
et al., 2008; Brown et al., 2008; Schootman et al., 2012), in-home in-
terviews to assess features around the home (Clarke, 2014), a combi-
nation of community mobility barriers and transportation facilities 
(Keysor et al., 2010; White et al., 2010), while several measured some 
form of ‘neighbourhood problems’ or signs of physical disorder such as 
litter, graffiti or vandalism (Balfour and Kaplan, 2002; Latham and 
Williams, 2015; Nguyen et al., 2016; Steptoe and Feldman, 2001; Walsh 
and Gannon, 2011; Clarke et al., 2008). However, common approaches 
of measuring built environment characteristics are often limited by only 
being able to include a single, or very few, built environment charac-
teristics in analyses, or by the availability of data. 

Open-source, publicly available data sources are increasingly being 
used as a method of measuring built environment characteristics 
(Rzotkiewicz et al., 2018). For example, Google Street View, Google 
maps, and Google satellite imagery provide information from different 
perspectives. Street view images offer street-level panoramic photog-
raphy and incorporate detailed information about the objects in the 
streetscape. Map images are more abstract, semantically rich images, 
and provide not only locations and boundaries of visible objects such as 
roads, parks, buildings, rivers and facilities, but also additional infor-
mation such as public transport routes and terrain. As a big data source 
covering half the world’s population and up to ten years historical data, 
Google Street View images have substantial research advantages (Gebru 
et al., 2017; Kang et al., 2018). Google maps, including satellite imagery, 
can be downloaded using the Google Maps API, allowing custom settings 
for locations, map types, and zoom levels. 

Approaches to analyse these increasingly large datasets, including 
machine learning methods, have attracted substantial interest within the 
scientific community. Machine learning is a sub-field of artificial intel-
ligence, focussing on training computers to perform specific tasks (e.g. 
classification, prediction) using large datasets. Machine learning algo-
rithms developed for these purposes include support vector machines, 
decision trees and graphical models. These algorithms have been used 
successfully for a wide variety of tasks such as spam filtering (Amayri 
and Bouguila, 2010), land cover classification (Pal and Mather, 2003), 
fraud detection (Perols, 2011) and weather forecasting (Wijnands et al., 
2015). A specific field of machine learning, deep learning, has achieved 
major advances in performance by radically increasing both the number 
of parameters in the model and the amount of data used to train them 
(Schmidhuber, 2015). Using deep learning, computers have now 
reached super-human performance in tasks ranging from playing board 
games (Silver et al., 2016) to image classification (He et al., 2015). So, 
how can machine learning be combined with satellite and street-view 
images to measure the built environment, and how does it differ from 
existing approaches like GIS or in-person or desktop audits? First, geo-
spatial data can be difficult to obtain, and in some cases is inaccurate, 
incomplete, or simply not collected and therefore does not exist (Stewart 
et al., 2016). And second, approaches to analysing existing street view 

(in-person and desktop) data have typically used audits (e.g. POSDAT 
(Edwards et al., 2013)). However, these are often time-consuming, 
labour-intensive, expensive exercises. Machine learning methods 
dramatically increase the feasibility of using satellite and street view 
imagery for measurement of the built environment. Even using unsu-
pervised machine learning approaches such as autoencoders (Ballard, 
1987), models are able to identify key environmental characteristics 
including vegetation, building size and design, road design, and transit 
stops (Mnih and Hinton, 2010). Autoencoders achieve this by using the 
image itself as the output label, while passing the data through a narrow 
bottleneck layer for feature extraction. 

In this study, we investigate the concept of image style transfer, 
where deep learning is used to merge the content of one image with the 
style of a different image (e.g. (Gatys et al., 2016; Zhang et al., 2017),). 
This concept can be extended to understand associations between the 
built environment and health by defining facilities and the urban layout, 
e.g. streets/building patterns (urban morphology) as content, and health 
outcomes as style (Wijnands et al., 2019). Translating an urban area to 
different styles, for example, from low health to good health, facilitates 
goal-oriented outcome transformation: by comparing the changes be-
tween the urban design characteristics before and after style transfer, we 
can gain an understanding of how neighbourhood characteristics might 
be associated with health. The advantage of this method is that it is not 
targeting a few selected factors, instead it explores all potential factors 
captured in the selected imagery at once. As the method is purely based 
on objective imagery information, it eliminates the possible bias caused 
by people in traditional human participated research methods. Beyond 
the application of exploring the health inequalities, this method can be 
readily extended to more broader applications, as maps of different 
types are available such as maps for terrain, land use, and public 
transport. 

Aim This study aimed to use generative adversarial networks (GANs) 
to understand the association between built environment characteristics 
and physical function. This will be achieved through combining resi-
dential geo-codes and health outcomes from a population representative 
study with imagery from Google Maps and Google Street View. Model 
outputs will be GAN-generated examples of neighbourhood design and 
streetscape characteristics associated with inequalities in physical 
function. 

Methods 

GANs are an unsupervised machine learning technique for realistic 
image generation. Based on imagery from two domains of interest, the 
UNsupervised Image-to-image Translation (UNIT) framework (Liu et al., 
2017) uses a pair of GANs to achieve domain translation based on the 
assumption of the existence of a shared latent space, encoding common 
features. The open-sourced UNIT framework is used in this study for 
both training and translation purpose. 

The HABITAT study 

This study used data from the How Areas in Brisbane Influence 
healTh And acTivity (HABITAT) project (Burton et al., 2009). HABITAT 
is a multilevel longitudinal (2007–2018) study of mid-aged adults 
(40–65 years in 2007) living in Brisbane, Australia. The primary aim of 
HABITAT is to examine patterns of change in physical activity, seden-
tary behaviour and health over the period 2007–2018 and to assess the 
relative contributions of environmental, social, psychological and 
socio-demographic factors to these changes. Details about HABITAT’s 
sampling design have been published elsewhere (Burton et al., 2009). 
Briefly, a multi-stage probability sampling design was used to select a 
stratified random sample (n = 200) of Census Collector’s Districts (CCD) 
(from a total of n = 1625) from the Australian Bureau of Statistics, and 
from within each CCD, a random sample of people aged 40–65 years (n 
= 16,127). 
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Physical function 

This was measured using the Physical Function Scale (PF-10), a 
component of the Short Form 36 Health Survey (Ware et al., 1994). The 
stem question of the PF-10 asked ‘Does your health now limit you in 
these activities? If so, how much?‘. Respondents were given the 
following choices as responses for each activity: ‘Yes, limited a lot’, ‘Yes, 
limited a little’ or ‘No, not limited at all’. The PF-10 measures a hier-
archical range of difficulties, from vigorous activities, such as lifting 
heavy objects to bathing and dressing (Haley et al., 1994). This measure 
has been extensively validated among community-dwelling adults using 
convergent validity calculated by Pearson correlations using three 
performance-based measures: single limb stance as an indicator of bal-
ance (r = 0.42), Time Up and Go test as a measure of mobility (r =
− 0.70) and gait speed as an indicator of overall functional capacity (r =
0.75) (Bohannon and DePasquale, 2001). The method of data cleaning 
for the physical function score was adapted from Ware, Kosinski (Ware 
et al., 1994). The raw physical function scores were calculated as the 
sum of re-coded scale items and were transformed to a 0 to 100 scale, 
where 0 represents minimal functioning, and 100 represents maximal 
functioning. 

Identifying areas 

In 2016, 3102 participants remained in the HABITAT study in their 
original area-level cluster (60.0% of Wave 5 respondents and 28.1% of 
the baseline sample). Initial plots of the data did not identify distinct 
clusters of participants that could be classified as either low or high 
physical function. Participants were therefore divided into two domains 
in order to maximise the chances of identifying differences in neigh-
bourhood characteristics based on our outcome of interest: the highest 
and lowest 10% of physical function were kept in the analytic sample, 
leaving 618 participants divided evenly into ‘high physical function’ and 
‘low physical function’ domains. Given that 618 images were insuffi-
cient for deep learning, rather than retrieving images at the coordinates 
of the 618 samples, these coordinates were used to form clusters using k- 
means to obtain neighbourhoods corresponding to high and low phys-
ical function. The k-means algorithm was selected to specify neigh-
bourhoods as it allowed for the specification of the final number of 
clusters. This was considered more important than specifying the 
number of data points within each cluster, using alternate methods such 
as k-nearest neighbours. A plot of the coordinates of each of the 3102 
participants is presented in Fig. s1. Details of the analytic sample are 
presented in Table 1. For each of the clusters, the cluster centre was 
determined, and images were retrieved around it. A bounding box was 
drawn around the centre, and the size of the bounding box was obtained 
by computing the average minimum distance (the distance from one 
cluster to its closest neighbour cluster) to ensure there was no overlap 
between the bounding boxes. Each bounding box had a size around 260 
by 260 m. All images were downloaded in March 2019 using the latest 
available images. While the majority of images were between 2013 and 
2018, some images retrieved were from as early as 2009. 

Aerial imagery retrieval 

Aerial imagery was downloaded using Google Maps Static API, 
which allows users to customise parameters including the centre of the 
map, zoom level of the region, size of the image, and the type of map 
(Google Maps Platform. Map, 2019). Several map types are available 
including roadmap, satellite, hybrid, and terrain. The Maps Static API 
also allows users to define the style of maps including the colour, 
brightness and visibility of features (and their markers) such as roads, 
water, transit, landscape, points of interest and administrative areas. 
Aerial imagery has some advantages over street view images in that it is 
more structured. Different colours can be applied to different features, 
and unwanted features and their markers can be excluded. For example, 

Fig. 1 contains a customised roadmap image (map type: road map, size: 
256 × 256, zoom level: 19) with the background defined as white, roads 
as black, water as blue, and parks as green. 

Google street view image retrieval 

For each bounding box, points were selected every 10 m, and for 
each point, eight images were retrieved using different heading angles 
(0, 45, 90, 135, 180, 225, 270, 315). Images were not retrieved where 
data were not available on Google Street View, or where images were 
out of scope for this study (e.g. in underground road tunnels). This led to 
the retrieval of 29,282 images for high physical function clusters and 
27,048 images for low physical function clusters (56,330 in total). The 
model extracted particular characteristics of the built environment, such 
as vegetation, building size and design, and road design, implicitly, as 
these features are required to successfully reconstruct an image. 

Table 1 
Characteristics of the HABITAT analytic sample, 2016.   

Low physical function 
neighbourhood 

High physical function 
neighbourhood 

n = 316 n = 302 

% % 

Age categories 
45-49 0.95 3.31 
50-54 15.19 24.17 
55-59 18.99 21.85 
60-64 19.62 18.54 
65-69 24.68 19.54 
70-74 20.57 12.58  

Sex 
Male 40.19 45.70 
Female 59.81 54.30  

Education 
Bachelor+ 20.57 56.29 
Diploma/Assoc Deg 10.13 8.94 
Certificate (trade/ 

Business) 
21.84 13.91 

None beyond school 47.47 20.86  

Occupation 
Mgr/prof 15.54 42.14 
White collar 19.26 15.71 
Blue collar 14.53 9.29 
Home duties 5.74 3.57 
Retired 32.77 23.93 
Not easily classifiable 12.16 5.36  

Household income 
$130000+ 11.18 32.31 
$72800–129999 17.76 22.11 
$52000–72799 9.87 12.59 
$26000–51599 26.97 11.56 
Less than $25999 24.01 6.80 
Don’t know 3.29 2.72 
Don’t want to answer 6.91 11.90  

Neighbourhood disadvantage 
Q1 (least 

disadvantaged) 
0.00 66.23 

Q2 3.16 17.22 
Q3 14.87 10.60 
Q4 20.57 4.97 
Q5 (most 

disadvantaged) 
61.39 0.99  
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Analysis 

Model training procedures 
The UNIT framework was trained using the general purpose GPU 

cluster of the University of Melbourne’s high-performance computing 
infrastructure (model settings and parameters available in Supplemen-
tary Material 2). Following model training, images from each domain 
were translated into their other respective domains, i.e., ‘high func-
tioning neighbourhood’ to ‘low functioning neighbourhood’ and vice 
versa. 

We used the default hyperparameters from the UNIT framework, 
available in Supplementary Material 2. The weights in the deep learning 
model were calibrated using small batches of images, limited by avail-
able GPU memory (in this study, one batch contained four images). 
Batches were used to iteratively update parameters in both the gener-
ative model and the discriminator using a low learning rate, alternating 
between the two models. This resulted in the generative model creating 
images of progressively better quality, while the discriminator also 
improved in its ability to assess whether an image was generated or real. 
Hence, this game-theoretic approach allowed both models to improve. 
After model calibration, only the generative model is required to 
generate realistic images. Given that areas are identified based on par-
ticipants’ physical function, physical function in this scenario is 
considered the explanatory variable, while environment attributes 
would be considered the outcome variable – given that built environ-
ment characteristics are produced from the model. We programmed the 
model to provide ‘snapshots’ every 1000 iterations. The discriminator 
model within the GAN attempted to guide the training in such a way that 
translated images looked realistic. For validation purposes, snapshots 
were sampled and evaluated visually as well every 1000 iterations. 
Terminating the training process after 5000 iterations (and 40,000 im-
ages passing through the model) was assessed to be optimal. 

Results 

Aerial imagery 

The aerial imagery retrieved was unable to be used to adequately 
train the model. A combination of the nature of the aerial imagery 
retrieved being too similar, and an insufficient number of images able to 
be retrieved due to the clustered nature of the sample, meant that aerial 
imagery failed to produce meaningful results. 

Street view imagery 

Image translation from ‘high physical function’ to ‘low physical 
function’ neighbourhoods revealed two key changes: 1) the removal of 
vegetation, particularly in the upper portion of images; and 2) the 
removal of the upper floors of buildings. These findings are presented in 
Figure 2. 

Image translation from ‘low physical function’ to ‘high physical 
function’ neighbourhoods revealed only one key change, namely, the 
addition of vegetation. These findings are presented in Fig. 3. 

Discussion 

This study found associations between higher physical function and 
the greater amounts of vegetation and higher-set residential dwellings. 
The number of aerial images for each area defined as high and low 
physical function was insufficient, even at high levels of zoom, to train 
deep learning models. Even for small neighbourhoods, increasing the 
number of aerial images in a cluster by downloading images with 
overlapping areas increased the quantity, but the quality of training was 
poor due to a lack of variation in these images. This study downloaded 
roadmap images and satellite images for each cluster using different 
zoom levels. The small zoom levels captured more information about the 
broader neighbourhood, while aerial imagery with larger zoom levels 
captured more local information of a neighbourhood; therefore, 
combining aerial imagery with different zoom levels depicted a neigh-
bourhood from more aspects than aerial imagery with one single zoom 
level. In order to use aerial imagery successfully, a larger spatial spread 
of sampled domain locations is required. For example, a study exam-
ining street layout with method of travel to work using Census data may 
be a more feasible use of aerial imagery. 

A recent systematic review of the association between the built 
environment and physical function found strong evidence for the 
importance of pedestrian infrastructure and aesthetics, while weaker 
evidence was found for land use mix, safety from crime and traffic, and 
an insufficient number of studies for walkability, residential density, 
street connectivity and access to public transport (Rachele et al., 2019). 
While our study identified the importance of vegetation, the literature 
on green space is both limited and mixed. Of two previous studies that 
have examined the association between green space and physical func-
tion, one had a null association (Vogt et al., 2015), while the other was 
positive (Nascimento et al., 2018). Further, while the current study did 
not identify any streetscape characteristics in image-to-image trans-
lation, several existing studies have identified positive associations be-
tween physical function and positive street characteristics (Beard et al., 
2009), the presence of benches (Sakari et al., 2017), positive front 
entrance features of dwellings (Brown et al., 2008) and unbroken foot-
paths (Werngren-Elgström et al., 2008). One possible explanation for 
this is that the study area, Brisbane, Australia, is controlled by one large 
local government. This means that policies regarding streetscape infra-
structure such as footpaths are likely to be similar between study areas if 
the same policies are applied everywhere. This is in contrast to a similar 
study undertaken examining Street View images and health (Wijnands 
et al., 2019) conducted in Melbourne, which has over 30 local govern-
ment areas. 

This study has several limitations. First, the descriptive, cross- 
sectional nature of the analysis meant that the study was limited in its 
ability to infer causation between urban design characteristics. Indeed, 
it is very plausible that people would select into low-set dwellings due to 
their poorer physical function. Second, some of the images downloaded, 
and also translated, were poorer quality. However, these inaccuracies 
were unlikely to have influenced the findings of this study. Third, there 
were some inherent biases from use of the HABITAT study. Survey non- 
response in the HABITAT baseline study was 31.5%, and slightly higher 
among residents from lower individual socioeconomic profiles, and 
those living in more disadvantaged neighbourhoods. Further, this study 

Fig. 1. A customised roadmap image (map type: road map, size: 256 × 256, 
zoom level: 19) defined the background as white, roads as black, water as blue, 
and parks as green. 
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used the fifth wave of HABITAT, which has experienced attrition over 
the life of the study. Like most longitudinal studies, this drop-out was 
greater among the socioeconomically disadvantaged and those with 
poorer health. However, analyses have shown that HABITAT attrition is 
consistent with a Missing at Random pattern (Barnett et al., 2017b). 
Finally, the generalisability of this study’s findings are likely to be 
limited to cities with similar built environments to Brisbane, Australia, 
including population distribution and the spatial patterning of built 
environment characteristics. Further information on the built environ-
ment can be found elsewhere (Gunn et al., 2018). Briefly, Brisbane is 
characterised by relatively walkable inner city neighbourhoods with 
good access to large parks; however, there is limited public transport 
and walkable communities in the outer suburban areas. 

There are several future research priorities. First, scope to identify 
causal relationships may become more feasible if temporal Street View 
data also becomes available and can be linked to available cohort 
studies. Examining associations between changes in built environments 
over time and changes in the trajectory of physical function decline 
would provide a much stronger basis to infer causation than in the 
current cross-sectional study design. Second, use of aerial imagery in 

future work would greatly complement the current study findings. 
Aerial imagery is able to capture broader urban design features impor-
tant to physical function (e.g. the connectivity of street networks, and 
neighbourhood proportions of green and blue space) that are difficult to 
capture in street view imagery. Future research should endeavour to 
replicate the methods of the current study with much larger sample sizes 
(e.g. census data) that can be linked to sufficient aerial imagery to train a 
GAN model. 
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